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The energetics of hydrogen in aluminium calculated from first
principles
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Physics Department, University of Keele, Keele, Staffordshire STS 5BG, UK

Received 21 May 1991, in final form ¢ November 1991

Abstract. The energetics and electronic structure of an isolated hydrogen impurity in bulk
aluminium and in the aluminium-vacancy system are studied by ab initio methods, The
calculations are based on the focal density approximation and the supercell approach, with
a porm-conserving pseudopotential for aluminium and the bare Coloumb potential for
hydrogen. The relaxed electronic ground state is determined by the conjugate-gradients
technique. Results are presented for the heat of solution, the relative energies of
different interstitial sites, the energy profile for migration of hydrogen between sites, and
the trapping energy and equilibrium location of hydrogen bound to a vacancy. The heat of
solution is close to the measured value, and the tetrahedral site is energetically favoured
over the oclahedral site, as indicated by experiment, though the energy difference between
the siles is comparable with the uncertainties in the calculations. Hydrogen is found to
be bound to the vacancy in a strongly off-centre position, with a binding energy that is
somewhat smaller than the experimental value.

1. Intreduction

The problem of providing an adequate theory of the energetics of hydrogen in metais
has attracted enormous interest over many vears (see e.g. Friedel 1952, Puska and
Nieminen 1984, Daw and Baskes 1984, Fukai and Sugimoto 1985, Ngrskov and Be-
senbacher 1987). There are both scientific and technological reasons for this. Since
hydrogen is the simplest possible impurity, there is a strong scientific incentive to ob-
tain a thorough fundamental understanding of its properties. From the technological
viewpoint, there are two important reasons for studying hydrogen in metals. The first
has to do with the harmful effects of dissolved hydrogen, such as embrittlement and
fatigue; the second arises from the continuing interest in metal hydrides as energy
storage systems. The motivation for the present work is scientific. Recent advances
in techniques for treating the total energy of materials from first principles have
made possible the reliable and accurate calculation of impurity and defect energies
(Srivastava and Weaire 1987, Thm 1988, Payne ef al 1991, Gillan 1991, De Vita and
Gillan 1991). The purpose of this paper is to report new calculations on hydrogen in
aluminium based on these new techniques.

The case of hydrogen in aluminium has attracted strong interest, because alu-
minium is one of the most important simple metals; the literature already contains
many papers on the energetics of this system (Popovic er al 1976, Larsen and Nerskov
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1979, Manninen and Nieminen 1979, Kahn et af 1980, Estreicher and Meier 1983,
Solt er al 1983, Craig 1983). However, all previous calculations have been based
on uncontrolled approximations, which were necessary at the time, but which can
now be awoided. Our aim in the present work is to avoid, as far as possible, the
approximations made in earlier studies.

Most of the previous work has taken as its starting point the proton in jellium
(Popovic er al 1976, Almbladh er @/ 1976, Ngrskov 1979, Larsen and Nerskov 1979,
Ngiskov and Lang 1980, Puska et ol 1981, Estreicher and Meier 1983). This starting
point is certainly relevant, because of the nearly-free-electron pature of aluminium,
but it does not by itself provide a useful description of the energetics, because it ig-
nores the interaction of the proton and its surrounding electron screening cloud with
the ionic cores. The simplest way of accounting for this describes the electron—core
interaction by a pseudopotential, whose effect is treated by first-order perturbation
theory. The early work of Larsen and Ngrskov (1979) showed that this interaction
produces a large correction, which is crucial to an understanding of the energet-
ics. This approach was studied in detail by Estreicher and Meier (1983), who found
that the results depended considerably on the pseudopotential employed, and con-
cluded that first-order perturbation theory is not sufficiently reliable. An alternative
approach, pioneered by Almbladh er al (1976) and used by several other workers
{Manninen and Nieminen 1979, Kahn ef al 1980, Perrot and Rasolt 1981), avoided
perturbation theory, but at the expense of making a spherical approximation for the
potential due to the ions. Most of the earlier work ignored relaxation of the lattice
surrounding the hydrogen, the belief being that the effect of this on the energy would
be negligible. The fact that this is not the case was appreciated by Perrot and Rasolt
(1981) and Solt er ol (1983), and will be confirmed in the present work.

The work we report here avoids the most serious approximations made in previous
treatments of the aluminium-hydrogen system. Our key remaining approximation is
the widely employed local density approximation for exchange and correlation, which
we believe produces only small errors for this system. The valence—core interaction
for aluminium is represemted by a fully non-local ab inifio pseudopotential. The
calculations employ periodic boundary conditions, so that we treat a periodic array
of protons in the aluminivm crystal. In principle, the electronic interaction of the
screened protons could produce effects which for present purposes are spurious, but
we shall provide evidence that these effects are small for the sizes of repeating cell
we employ. All our calculations fully include the relaxation of all ions in the system.
We shall present results for the heat of solution, the relative energies of different
interstirial sites, the migration enesgy for hydrogen diffusion and the binding energy
and the location of the stable site for hydrogen bound to a vacancy.

2, Methods

Since the methods used in this work have been described in detail in previous papers
(Gillan 1989, De Vita and Gillan 1951), it will be sufficient here to summarize the
main points. We also describe in this section a perturbative correction which we
have introduced to treat the high-wavevector components of the Couiombic electron-
proton interaction.

The work is based on the local density approximation for electronic exchange and
correlation, the exchange—correlation energy as a function of electron density being
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that of Perdew and Zunger (1981). Valence electrons only are treated. The electron-
core interaction for aluminium is described by a pseudopotential having the non-local
Kleinman-Bylander form (Kieinman and Bylander 1982). This includes s- and p-
non-locality, and is based on the ab initio semilocal pseudopotential of Bachelet et
al (1982). Full details of the pseudopotential are given in our earlier paper (De
Vita and Gillan 1991), where we show that it accurately reproduces the equilibrium
lattice parameter and bulk modulus of aluminium and gives a satisfactory account of
the energetics of the vacancy and the self-interstitial systems. The electron—proton
interaction is taken to be the bare Coulomb interaction.

The electron orbitals are expanded in plane waves up to a cut-off energy £,
which we normally take to be 13 Hartrees. This large cut-off is needed to deal with
the singular Coulomb potential of the proton and the associated cusp in the wavefunc-
tions, as discussed in more detail below. Brillouin-zone sampling is performed using
the Monkhorst-Pack scheme (Monkhorst and Pack 1976), and a finite-temperature
Fermi surface smoothing technique is employed to increase integration efficiency. The
quantity minimized corresponds formally to the total free energy in the fixed volume
of the wnit cell, at a fictitious temperature corresponding to a small fraction of the
Fermi energy of the free-electron gas of the same density (Gillan 1989). An accurate
approximation to the ground-state energy is then obtained as the mean of the energy
and the free energy (Gillan 1989, De Vita and Gillan 1991).

Simultaneows relaxation of the electron orbitals to self-consistency and of the
ionic positions to equilibrium is accomplished by the conjugate gradients technique,
which is described in detail in earlier papers (Gillan 1989, De Vita and Gillan 1991).
We have noted before that this is a reliable and robust method for locating the
minimum energy configuration of defect and impurity systems, but since we have not
reported before on the efficiency of the minimization procedure, it will be helpful
to illustrate here the typical course of such a calculation. We show in figure 1 the
total free energy as a function of iteration number for the system of 27 aluminium
atoms with hydrogen at the tetrahedral site. Here, a single iteration consists of a
full electronic orbital displacement plus the ionic relaxation in the updated electronic
charge distribution. In the injtial configuration, all ions are on perfect lattice sites,
with the initial valence density taken to be a superposition of atomic densities. The
injtial orbital wavefunctions are those obtained by diagonalization of the Kohn-Sham
Hamiltonian constructed from this approximate density, the diagonalization being
performed with a small plane-wave cut-off energy, which was 1.5 Hartree in the case
illustrated. For the purposes of the present work, one needs to ensure convergence
of the total energy to within about 1073 Hartree. As the figure shows, the conjugate
gradients procedure achieves this in less than 30 iterations for the maximum cell size
adopted in the present calculations, and for a geometry in which lattice relaxation
will be seen later to be energetically decisive.

Finally, we describe briefly a perturbation correction we have applied in order to
account for the omission of plane waves above the cut-off E/,. The main purpose of
this is to correct for our inaccurate treatment of the cusp in the wavefunctions at the
proton. It should be noted that this correction is expected to be rather small because
of the high primary cut-off we use. In addition, the correction is not expected to
affect significantly the relative energies for hydrogen at different positions, since the
error is unlikely to depend much on position. However, we shall see later that its
effect on the heat of solution is not completely negligible.

The correction is applied once only to the sum of single-particle energies, after
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Figure 1. Iliustration of the convergence of the total
free energy to structurally relaxed self-consistency
as a function of iteration number, The results are
for hydrogen at the tetrahedral site in a system of
27 aluminjum atoms; they show that convergence
to better than 10—3 Hartree is obtained within 30
iterations.
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Figure 2. A lest of the perturbative correction. The
plot shows the fully converged total energy, Euot,
for hydrogen at the tetrahedral site in a system of
27 aluminium atoms at a sequence of values of the
secondary cut-off energy Ef,. White and black
symbols show the results for the primary cut-off
energy E7, set equal to 8 and 13 Hartree respec-

tively.

self-consistency has been achieved, and takes the form of the usual second-order
perturbation expression. The matrix elements of the potential in this expression are
those connecting plane waves below the cut-off to those above. The correction d¢
to the eigenvalue of orbital ¢ at sampling wavevector g is given by:

e (glVislG + )l

q: T L 2
G(Gra>ky o~ zlG Tl

B (D

Here, +,; and ¢,; are the unperturbed eigenfunction and eigenvalue of orbital i at
sampling vector q, |k} is the plane-wave state at wavevector k, and Vi is the Kohn—
Sham potential operator. The sum only goes over plane waves whose wavevector
G + ¢ is greater than the cut-off wavevector k., which is related to the primary
energy cut-off E[, by EL, = £kZ; it extends up to a secondary energy cut-off EJ,,.
The correction to the total energy is then taken to be:

SE= w, Y fubeg @
g H

where w, is the sampling weight at wavevector g and f,; is the occupation number
of orbital 7 at this wavevector.

We have made checks to verify that this perturbative correction achieves what js
required. A word is needed here about what we demand of the correction. Suppose
we have made a fully self-consistent calculation using a primary energy cut-off E/,,
and we have applied the perturbative correction using a secondary cut-off EZ,, thus
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obtaining the estimate E,, for the total energy. If the correction is effective, then
the estimate E,, should not vary if E, is varied with E, held fixed. In fact, it is
useful to examine F,, as a function of EJ, for each given E.,: it is straightforward
to caiculate the correction for a sequence of values of Ef},. According to what we
have said, plots of £, against E,, for different values of E[, should coincide. As
an illustration of this, we show in figure 2 results for the total energy obtained for
hydrogen at the tetrahedral site in a system of 27 aluminium atoms. The figure shows
E,. including the perturbative correction as a function of Ej, for E/, = 8 and 13
Hartree. The two curves coincide to within about 2 x 10~% Hartree. The figure also
shows that the correction lowers the energy by some 15 x 10~ Hartree, which is
not negligible when one considers the heat of sclution. It is worth noting that the
perturbative correction used here is similar to the one applied by van de Walle er al
(1989) in their recent calculations on hydrogen in silicon.

3. Results

3.1. A preliminary test

In order to provide a check on our methods, we have used them to calculate the
embedding energy of a hydrogen atom in jellium. This is a rather powerfui check,
because the problem of embedding hydrogen in jellium bears a strong resemblance
to that of embedding hydrogen in a metal. On the other hand, the embedding energy
of hydrogen in jellium over a range of densities was well established some years ago
through much simpler calculations which made use of the spherical symmetry of the
system (Almbladh e g/ 1976, Zaremba er al 1977, Norskov 1979). The idea is, then,
that by comparing the results obtained for this system using our present techniques
with the established results we are subjecting our techniques to a fairly stringent test.

In making this check, we use exactly the same pericdic boundary conditions, Fermi
surface smoothing and Brillouin-zone sampling as in the calculations on aluminiuvm
reported below, but of course with the bare Coulomb potential of the proton as
the only external potential acting on the electrons. The embedding eneigy is the
difference of two energies. The first is the ground-state epergy of the periodically
repeated system of N + 1 electrons and one proton in volume ; the second is the
energy of the system N electrons in the same volume plus the energy of an isolated
hydrogen atom, the latter being taken to have its exact value of —0.5 Hartree. The
electron density N/ is given the value appropriate to bulk alurninium, namely 0.0269
au.

Two quantities govern the accuracy of these calculations: the plane-wave cut-off
energy and the number of sampling points. The dependence of the total energy of
the embedded hydrogen system on cut-off energy is almost identical to that displayed
in figure 2, though of course with a shift in the energy zero, The results quoted below
were obtained with a secondary cut-off of at least 30 Hartree, which appears to be
enough to ensure convergence of the total energy to within 2.5 x 10~3 Hartree.

In order to correct for any incompleteness of Brillouin-zone sampling, we apply
the ‘jellium correction’ employed in our previous work on defects in aluminium (De
Vita and Gillan 1991). The idea is that for calculations of the present kind, the
sampling error is similar to the error that would be incurred in a calculation on
pure jellium. We therefore use the given periodic boundary conditions, Fermi surface
smoothing and number of sampling points to calculate the total energy of jellium
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for the number of electrons of interest, and subtract from this the exact value, This
error is the jellium correction, which is subtracted from the total energy of the system
under study.

Table 1. Embedding energy A E of hydrogen in jellium (energy of embedded hydrogen
system minus energy of jellium plus isolated hydrogen). The difference between the
uncorrected and corrected AE is the jellium correction (see text). The reference values
of AF are those of at Almbiadh e al (1976); b: Zaremba er al (1977); & Norskov

(1979).

16-atom 27-atom
AE (eV) uncorrected 1,36 1.57
AE (eV) corrected 1.51 1.50

AE (8V) reference  130%%  15I°

We have performed our test calculations on the hydrogen embedding energy in
jellium for numbers of electrons corresponding to 16 and 27 aluminjum atoms in the
appropriate volume. The temperature T controlling the Fermi smoothing was 0.1
of the Fermi kinetic energy in jellium, and two Monkborst-Pack sampling points in
each irreducible wedge were used. Our resulis for the hydrogen embedding energy
in jellium are reported in table 1, both with and without the jellium correction (but
including in both cases the perturbative correction). The jellium correction applied
to the perturbatively corrected results gives our best calculated values; these are com-
pared with the standard literature results, which come from calculations performed in
spherical symmetry. The close agreement indicates that the heat of solution reported
later should be subject to a technical error of at worst about 0.2 eV,

The literature values for the embedding energy refer, of course, to the embedding
energy of hydrogen at infinite dilution. Our conciusion is therefore valid only if
we can assume that the interaction between periodically repeated hydrogens can be
neglected. We believe this neplect is justified by the extremely efficient and highly
Jocalized electronic screening of the proton. This is confirmed by the close agreement
between the results for different cell sizes.

3.2. Swability of interstitial sites and heat of solution

There are two possible interstitial sites for hydrogen in aluminium: the octahedral
site and the tetrahedral site. It is clear from previous work (Manninen and Njeminen
1979, Kahn et af 1980, Perrot and Rasolt 1981, Estreicher and Meier 1983, Solt et al
1983) that the energy difference between the two sites is rather small.

We have calculated the pground-state energies for hydrogen at these two sites,
both with and without lattice relaxation, for systems containing 16 and 27 aluminium
atoms. It is convenient to present each energy as an embedding energy of the type
discussed in section 3.1, ie. as the change of energy on going from perfect bulk
aluminium plus an isolated hydrogen atom to the system containing the same number
of aluminium atoms, with the hydrogen at an interstitial site. As before, we apply the
jellium correction; this does not affect relaxation energies or the relative energies of
sites, though it does affect the heat of solution.

The calculated energies are presented in table 2. A number of important points
are noteworthy. Firstly, the difference between the relaxed energies of the two sites is
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Table 2. Results of calculations on hydrogen at tetrabedral (tet) and octahedral (oct)
sites for periodic systems having 16 and 27 aluminjum atoms. The embedding energy
AFE (energy of fully relaxed sysiem with hydrogen minus energy of perfect crystal plus
isolated hydrogen atom) is given without and with the perturbative correction (see text).
The energy of solution E,y is obtained by adding to A E' the experimental dissociation
energy per alom of the Hz molecule (2.24 ¢V). Also shown are the relaxation energy
(energy of unrelaxed minus energy of relaxed systems) and the relaxational displacement
of nearest-neighbour aluminium atoms.

16-atom 27-atom

tet act tet oct

AF (V) no pert. -108 -096 -111 -1.07
AFE (eV) with pert. —1.29 ~-1.15 -130 ~1.24

By (eV) 095 — 094 —
Belax. energy (eV) 036 004 032 005
Relax. displ. (A) 012 003 012 004

small: 0.14 eV in the 16-atom system, and 0.06 €V in the 27-atom system. Secondly,
in both systems the relaxed tetrahedral site is more stable. Thirdiy, lattice relaxation
plays an important role in determining the relative stability of the sites. The reason
for this is that the relaxation energy for the tetrahedral site is over 0.3 ¢V, while
the octahedral relaxation eneigy is only a2 few hundredths of an eV, We comment
further on these points in section 4, where we also discuss possible reasons for the
variation of the calculated energies with system size. In order to obtain the heat
of solution, we have to add the dissociation energy per atom Ep of the hydrogen
molecule to the most negative embedding energy, ramely that for the tetrahedral site;
since we expect our results for the 27-atom cell to be the most accurate, we take this
embedding energy to be —1.30 eV. We could choose to take the value of E, either
from caiculation or from experiment; we take the experimental value Ep = 2.24 eV
(Beutler 1934). The resulting heat of solution is 0.94 eV, which should be compared
with the experimental values of 0.83 eV (Ransley and Neufeld 1948) and 0.66 eV
(von Eichenauer 1968). The significance of this agreement will be discussed later.
The form of the electronic screening charge surrounding the proton is of con-
siderable interest. Figure 3(z) shows a contour plot of the valence electron density
on the (110) plane passing through hydrogen at the tetrahedral site. The extremely
localized nature of the screening charge, already known from previous calculations
on hydrogen in jellium, is immediately clear. It is also clear that the presence of the
screened proton induces only very small changes in the electron distribution around
neighbouring aluminium atoms. This fact is even clearer if we calculate the screening
charge distribution itself, by which we mean the difference of charge distribution be-
tween the system with hydrogen and the perfect aluminium crystal. In order to make
this difference meaningful, we need to calculate it for the ionically unrelaxed sys-
tem, because otherwise the displacements of the aluminium atoms would themseives
contribute substantially to the charge difference. The screening charge distribution
calculated in this way for hydrogen at the tetrahedral site in the 27-atom system is
shown in figure 3(b). This picture shows two remarkable features. Firstly, the distri-
bution has almost complete spherical symmetry, with hardly any disturbance due to
the aluminium lattice, except in the region of the nearest neighbours. This provides a
justification for the common assumption that the charge distribution can be approxi-



Figure 3. (a) Contour plot of the electron density on the (110} plane passing through
hydrogen at the tetrahedral site in a system of 27 aluminium atoms. Values marked on
contours indicate the electron number density in units of 102 electrons per Bohr radius
cubed (in these units the average eleciron density is 2.7). (&) The screening eleciron
density (see text) corresponding to {2); units of clectron density as in (a).

mately represented as a rigid superposition of the proton screening charge in jellium
and the charge distribution of the host metal (Larsen and Ngiskov 1979, Estreicher
and Meier 1983). Secondly, one sees clearly the extremely efficient localization of the
screening charge. We estimate that in the region midway between the periodically
repeated protons the magnitude of the screening charge density is less than 4 x 103
times the bulk density. This very small value provides further support for the neglect
of electronic interactions between the protons, which we assume in interpreting our
results for the energetics.

3.3. Hydrogen migration energy

The migration energy for diffusion is the energy barrier that the hydrogen must sur-
mount as it diffuses between interstitial sites. Since previous work, as well as physical
intuition, indicates that the lowest barrier is obtained if we move the hydrogen along
the (111) direction between the tetrahedral and octahedral sites, we have calculated
the energy profile along this path.

In calculating the barrier height, the relaxation of the metal atoms must be in-
cluded: we require the lowest barrier that would be found if we were to search over
all paths in configuration space connecting the relaxed tetrahedral and octahedral
configurations. In order to identify the barrier, we have performed calculations in
which the system is relaxed to full equilibrium with the proton fixed at a series of
positions on the line joining a tetrahedral site to a neighbouring octahedral site, while
the centroid of the system of host atoms is aJso held fixed. (Some constraint must be
imposed on the host system during relaxation, since otherwise it would move bodily
until the proton arrived back at an interstitial site. The choice of host centroid seems
to be the most economic and least arbitrary; it is crucial to note that, although this
choice affects the detailed form of the energy profile, it does not affect the barrier
height.)
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Figure 5. Prcfile of the total energy of the fully
relaxed hydrogen-vacancy system as a function of
proton position on the strzight line in the (I11)
direction between the centre of the vacancy (V)
and a neighbouring tetrahedral site (T). White and
black circles show respectively the results obtained
for the 16-atom and 27-atom systems.

obtained without and with the perturbative correc-
tion.

The calculated energy profiles for the fully relaxed systems of 16 and 27 host
atoms are displayed in figure 4. The energies at the interstitial sites themselves are
those reported in section 3.2. We mentioned above that the perturbative correction
has little effect on relative energies within the same system. This is illustrated in the
figure, which shows the migration profiles obtained without and with the correction.
The two profiles differ only by an essentially constant energy shift. The migration
energy, which is the energy difference between the barrier top and the most stable
mterstitial site, is 0.20 eV for the 16-atom system and 0.15 &V for the 27-atom system.
The correct experimental value of the migration energy is unfortunately not clear, as
we shall discuss later.

3.4. Binding energy of hydrogen to a vacancy

When considering the binding of hydrogen to a vacancy, two questions are important.
Firstly, we need to know the configuration of the hydrogen—vacancy system that gives
the lowest energy. Secondly, we require the binding energy: the difference between
the energy of this configuration and the energy of the same system when the hydrogen
and the vacancy are well separated.

In seeking the equilibrium configuration, we have not made a complete search.
We report here the fully relaxed energies only for configurations in which the proton
lies on a series of positions on the line in the (111) direction joining the centre of the
vacancy to a neighbouring tetrahedral site. As in the calculations on the migration
energy, the total energy is minimised with the centroid of the host system held fixed.
The calculated energies for the 16- and 27-atom systems are displayed in figure 5.
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We note that the hydrogen is not stable at the centre of the vacancy; this confirms
what has already been found in earlier, more approximate calculations (Larsen and
Nerskov 1979). The most stable configuration we find has the proton displaced by
only a small amount {rom the tetrahedral site, the energy being lower than that of
the vacancy-centre configuration by about 0.7 eV.

The binding energy is obtained as the difference between two embedding ener-
gies, the first being the energy for embedding the hydrogen in the relaxed vacancy
system with the hydrogen at the minimum-energy configuration discussed above, and
the second being the fully relaxed energy for embedding a hydrogen atom at the
tetrahedral site in the perfect host system. The calculated binding energies for the
16- and 27-site systems are 0.19 and 0.34 eV. Our conclusion is thus that hydrogen
is bound to a vacancy, though we note that the binding energy is considerably lower
than the values obtained in early calculations (Popovic and Stott 1974, Larsen and
Ngrskov 1979), which were of order 1 eV. The experimental value of the binding
energy is 0.52 eV (Myers ef al 1989).

Figure 6. Contour plot of the electron density in the
vacancy-hydrogen system. The density is shown on
the {110) plane passing through the vacancy centre
and the proten at its most stable position. Values
marked on contours indicate the electron number
density in units 10~? electrons per Bohr radius
cubed (in these unils the average electron density
is 2.7),

Figure 6 shows the valence electron density in the (110) plane passing through
the stable position of the hydrogen and the centre of the vacancy.

4. Discussion

We discuss in this section how our calculated results relate to previous theoretical
work and to experimental measurements. Before doing this, it will be useful to
comment on the technical aspects of our calculations.

Apart from the assumptions involved in the local-density approximation, the main
sources of inaccuracy in the calculations are the pseudopotential approximation, the
Fermi-energy smoothing, the plane-wave cut-off, the size of the repeating ceil, and
the Briliouwin-zone sampling. The use of non-local pseudopotentials and Fermi-energy
smoothing in the representation of the metal host in the calculation has recently been
discussed in a study of the vacancy defect in aluminium (De Vita and Gillan 1991),
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where LDA-APW resulis were available for comparison. Given the large cut-off energy
we have used, and our perturbation correction for plane waves beyond the cut-off, we
believe that inaccuracies due to the cut-off do not have a significant influence on our
results. The question of system size is more problematic, since we do see differences
between the results for our 16-atom and 27-atom calculations which are significant;
for example, the embedding energies at the octahedral site differ by as much as 0.1 eV,
which is not fully satisfactory. The possible reasons for such differences are of three
kinds: firstly, there may be significant electromic interaction between the impurities;
secondly, lattice relaxation may be influenced by system size; thirdly, Brillouin-zone
sampling errors will be affected by the size of the system. We have shown that
electronic interaction between the impurities is probably negligible, and we certainly
do not expect it to affect energy differences. Lattice relaxation effects cannot be
ruled out, but we note from table 2 that the calculated relaxation energies are very
littie affected by the size of the system. The most likely culprit therefore seems to be
insufficient fineness of the sampling. We are, of course, already working close to the
limits of what is currently feasible, but it would clearly te desirable in future work to
extend these calculations to larger cell sizes with finer sampling. A useful discussion
of cell size effects in metal-hydrogen calculations has recently been given by Koudou
et al (1990).

We now turn to a comparison with earlier theoretical and experimental results. We
note first that our calculated heat of solution of .94 eV is in reasonable agreement
with the experimental values of 0.83 ¢V (Ransley and Neuvfeld 1948) and 0.66 eV
(von Eichenauer 1968). We have shown that our techniques, when applied to the em-
bedding of hydrogen in jellium, successfully reproduce the known embedding energy.

We find that the fuily relaxed tetrahedral and octahedral interstitial configura-
tions are very close in energy, the tetrahedral configuration being lower by 0.06 eV
according to the results for our largest cell. This is in general accord with previous
calculations (Manninen and Nieminen 1979, Kahn ef a/ 1980, Perrot and Rasolt 1981,
Estreicher and Meier 1983, Solt et al 1983), which all find very similar energies for
the two configurations. Our most significant result here concerns the important role
played by lattice relaxation. Our calculated relaxation energy for the tetrahedral site is
0.32 eV, which is much greater than the value of 0.05 ¢V for the octahedral site. This
is not unexpected, since the distance between the proton and its nearest neighbours
is smaller in the tetrahedral than in the octahedral configuration by a factor /3/2.
Our conclusion is that lattice relaxation is one of the main physical factors determin-
ing the relative stability of the sites. The evidence from ion-channelling experiments
favours the tetrahedral site, though it has been suggested that the octahedral site may
be occupied under certain conditions (Bugeat and Ligeon 1979, Ligeon er af 1986,
Myers et al 1989). It seems clear from both theory and experiment, then, that the
relative stability of tetrahedral and octahedral sites is a fairly subtle matter, about
which one cannot yet be completely confident.

The migration energy we find (0.20 eV and 0.15 eV for the 16- and 27-site systems)
is lower than the value of typically 0.5 eV obtained in some earlier calculations (e.g.
Kahn et af 1980). One reason for this is certainly that our calculations are the first
in which the lattice relaxation accompanying migration is fully included. Again, the
experimental situation is not very clear, The most reliable measurements appear to
be those of Papp and Kovacs-Csetenyi (1981) and of Hashimoto and Kino (1983),
both performed at temperatures above about 600 K, which give values of 0.40 and
0.61 eV respectively. However, Hashimoto and Kino find that the activation energy
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decreases strongly when the temperature is reduced to about 300 K. Their suggestion
is that intrinsic diffusion of hydrogen is observed at low temperatures, but that at high
temperatures most of the hydrogen is bound to vacancies. Circumstantial evidence for
a rather low migration energy of hydrogen in aluminivm comes from a consideration
of the diffusion coefficient of positive muons. It is well known that muons diffuse
much more rapidly in aluminium than in copper over a wide range of temperature, to
the extent that muon spin relaxation is unobservable in aluminium unless the muons
are trapped at impurities, though it is easily observable in copper (Seeger 1978, Kehr
et al 1982, Hartmann e af 1988). This suggests that the energy barriers in aluminium
must be lower than in copper. But the activation energy for hydrogen in copper is
well established to be 0.40 eV (Katz et al 1971, Perkins and Begeal 1972). It therefore
seems to us unlikely that the activation energy in aluminium could be greater than
this. Our conclusion is that, while our calculated value is somewhat low compared
with the available data, it is not necessarily in conflict with experiment,

On the question of the binding of hydrogen o vacancies, we find, in agreement
with earlier work (Larsen and Ngrskov 1979), that the stable size for bound hydrogen
is strongly displaced from the vacancy centre. As we have stressed, our search
over hydrogen positions is limited to the line along the (111) direction between the
centre of the vacancy and a neighbouring tetrahedral site. Along this direction, the
minimum of energy occurs at a point very near the tetrahedral site, but displaced
slightly towards the vacancy, in qualitative agreement with the results of channeling
experiments (Myers ef al 1589). The restriction of our calculations to a particular
search line was, of course, dictated only by limitations of computer resources, but we
recognise that a more extended search would be desirable, Our hydrogen-vacancy
binding energy for the 27-site celi is 0.34 eV, This is somewhat smaller than the
experimental value of (.52 eV (Myers er al 1989). We note that early calculations
gave much larger values in the region of 1 eV (Larsen and Nerskov 1979).

In conclusion, we believe that the methods used in this work have much to offer
for the study of hydrogen impurities in metals. We are currently attempting to
extend the calculations to treat the energetics of hydrogen in niobium. The use of
pseudopotential methods for transition metals raises new problems, because of the
strong d-wave component of the pseudopotential and the strongly localized nature
of the d-orbitals. However, these are problems that can be overcome, as is clear
from the recent pseudopotential calculations of Wang et a/ (1985) on hydrogen in
palladium.
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