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The energetics of hydrogen in aluminium calculated from first 
principles 
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Physics Depanmenr, University of Wle, Keele, Staffordshire STS SBG, UK 

Received 21 May 1991, in Knal form 4 November 1991 

Absiract The energetics and elecwnic SVUUUE of an isolated hydrogen impurity in bulk 
aluminium and in the aluminium-vacancy system are studied by nb inirlo melhods The 
calculations are based on lhe local density approximation and the supercell approach, with 
a normconserving pseudopotential for aluminium and the bare Coloumb potential for 
hydrogen. The relaxed electronic ground state is determined by lhe conjugate-giadients 
technique. Results are presented for the heat of solution, the relative energies of 
different interstitial sites, the energy profile for migration of hydrogen between sites, and 
the trapping energy and equilibrium location of hydrogen bound to a vacancy. The heat of 
solution is close to the measured value, and the tetrahedral site is energetically favoured 
wer the ocrahedral site, as indicated Ly experiment, lhough the energy difference between 
the siles is comparable with the uncertainties in the calculations Hydrogen is found to 
be bound to the vacancy in a strongly off-centre position, with a binding energy that is 
somewhat smaller than the experimental value. 

1. Introduction 

The problem of providing an adequate theory of the energetics of hydrogen in metals 
has attracted enormous interest over many years (see e.g. Friedel 1952, Puska and 
Nieminen 1984, Daw and Bakes 1984, Fukai and Sughnoto 1985, N0rskov and Be- 
senbacher 1987). There are both scienti6c and technological reasons for this. Since 
hydrogen is the simplest possible impurity, there is a strong scientific incentive to ob- 
tain a thorough fundamental understanding of its properties. From the technological 
viewpoint, there are two important reasons for studying hydrogen in metals. The fist 
has to do with the harmful effects of dissolved hydrogen, such as embrittlement and 
fatigue; the second arises from the continuing interest in metal hydrides as energy 
storage systems. The motivation for the present work is scientific. Recent advances 
in techniques for treating the total energy of materials from first principles have 
made possible the reliable and accurate calculation of impurity and defect energies 
(Srivastava and Weaire 1987, Ihm 1988, Payne ef a1 1991, Gillan 1991, De Vita and 
Gillan 1991). The purpose of this paper is to report new calculations on hydrogen in 
aluminium based on these new techniques. 

The case of hydrogen in aluminium has attracted strong interest, because alu- 
minium is one of the most important simple metals; the literature already contains 
many papers on the energetics of this system (Popovic er ai 1976, m e n  and Nsrskov 
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1979, MaMinen and Nieminen 1979, Kahn er a1 1980, Estreicher and Meier 1983, 
Solt er a1 1983, Craig 1983). However, all previous calculations have been based 
on uncontrolled approximations, which were necessary at the time, but which can 
now be avoided. Our aim in the present work is to avoid, as far as possible, the 
approximations made in earlier studies. 

M a t  of the previous work has taken as its starting point the proton in jellium 
(Popovic er a1 1976, Almbladh et a1 1976, Nprrskov 1979, Larsen and Nprrskav 1979, 
Nprrskov and Lang 1980, Puska er al 1981, Estreicher and Meier 1983). This starting 
point is certainly relevant, because of the nearly-free-electron nature of aluminium, 
but it does not by itself provide a useful description of the energetics, because it i g  
nores the interaction of the proton and its surrounding electron screening cloud with 
the ionic cores. The simplest way of accounting for this describes the electron-core 
interaction by a pseudopotential, whose effect is treated by first-order perturbation 
theory. The early work of Larsen and Nprrskov (1979) showed that this interaction 
produces a large correction, which is crucial to an understanding of the energet- 
ics. This approach was studied in detail by Estreicher and Meier (1983). who found 
that the results depended considerably on the pseudopotential employed, and con- 
cluded that 6rst-order perturbation theory is not sufficiently reliable. An alternative 
approach, pioneered by Almbladh er a1 (1976) and used by several other workers 
(Manninen and Nieminen 1979, Kahn et a1 1980, Perrot and Rasolt 1981), avoided 
perturbation theory, but at the expense of making a spherical approximation for the 
potential due to the ions. Most of the earlier work ignored relaxation of the lattice 
surrounding the hydrogen, the belief being that the effect of this on the energy would 
be negligible. The fact that this is not the case was appreciated by Perrot and Rasolt 
(1981) and Solt er a1 (1983), and will be confirmed in the present work. 

The work we report here avoids the most serious approximations made in previous 
treatments of the aluminium-hydrogen system. Our key remaining approximation is 
the widely employed local density approximation for exchange and correlation, which 
we believe produces only small errors for thii system. The valencecore interaction 
for aluminium is represented by a fully non-local ab in& pseudopotential The 
calculations employ periodic boundary conditions, so that we treat a periodic array 
of protons in the aluminium crystal. In principle, the electronic interaction of the 
screened protons could produce effects which for present purposes are spurious, but 
we shall provide evidence that these effects are small for the sizes of repeating cell 
we employ. All our calculations fully include the relaxation of all ions in the system. 
We shall present results for the heat of solution, the relative energies of different 
interstitial sites, the migration energy for hydrogen diffusion and the binding energy 
and the location of the stable site for hydrogen bound to a vacancy. 

A De Vca and M J Gillnn 

2. Methods 

Since the methods used in t h i  work have been described in detail in previous papers 
(Gillan 1989, De Vita and Gillan 1991), it will be sufficient here to summarize the 
main points. We also describe in this section a perturbative correction which we 
have introduced to treat the high-wavevector components of the Coulombic electron- 
proton interaction. 

The work is based on the local density approximation for electronic exchange and 
correlation, the exchangecorrelation energy as a function of electron density being 
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that of Perdew and Zunger (1981). Valence electrons only are treated. The electron- 
core interaction for aluminium is described by a pseudopotential having the non-local 
Kleinman-Bylander form (Kleinman and Bylander 1982). This includes s- and p- 
non-locality, and is based on the ub hili0 semilocal pseudopotential of Bachelet et 
al (1982). Full details of the pseudopotential are given in our earlier paper (De 
Vita and Gillan 1991), where we show that it accurately reproduces the equilibrium 
lattice parameter and bulk modulus of aluminium and gives a satisfactory account of 
the energetics of the vacancy and the self-interstitial systems. The electron-proton 
interaction is taken to be the bare Coulomb interaction. 

The electron orbitals are expanded in plane waves up to a cut-off energy E;ut 
which we normally take to be 13 Hamees. This large cut-off is needed to deal with 
the singular Coulomb potential of the proton and the associated cusp in the wavefunc- 
tiom, as discussed in more detail below. Brillouin-zone sampling is performed using 
the Monkhorst-Pack scheme (Monkhorst and Pack 1976), and a finitetemperature 
Fermi surface smoothing technique is employed to increase integration efficiency. The 
quantity minimized corresponds formally to the total free energy in the 6xed volume 
of the unit cell, at a fictitious temperature corresponding to a small fraction of the 
Fermi energy of the freeelectron gas of the same density (Gillan 1989). An accurate 
approximation to the ground-state energy is then obtained as the mean of the energy 
and the free energy (Gillan 1989, De Vita and Gillan 1991). 

Simultaneous relaxation of the electron orbitals to self-consistency and of the 
ionic positions to equilibrium is accomplished by the conjugate gradients technique, 
which is described in detail in earlier papers (Gillan 19S9, De Vita and Gillan 1991). 
We have noted before that this is a reliable and robust method for locating the 
minimum energy configuration of defect and impurity systems, but since we have not 
reported before on the efficiency of the minimization procedure, it will be helpful 
to illustrate here the typical course of such a calculation. We show in figure 1 the 
total free energy as a function of iteration number for the system of 27 aluminium 
a t o m  with hydrogen at the tetrahedral site. Here, a single iteration consists of a 
full electronic orbital displacement plus the ionic relaxation in the updated electronic 
charge distribution. In the initial configuration, all ions are on perfect lattice sites, 
with the initial valence density taken to be a superposition of atomic densities. The 
initial orbital wavefunctions are those obtained by diagonalization of the Kohn-Sham 
Hamiltonian constructed born this approximate density, the diagonalization being 
performed with a small plane-wave cut-off energy, which was 1.5 Hartree in the case 
illustrated. For the purposes of the present work, one needs to ensure convergence 
of the total energy to within about Haruee. As the figure shows, the conjugate 
gradients procedure achieves this in less than 30 iterations for the maximum cell size 
adopted in the present calculations, and for a geometry in which lattice relaxation 
will be seen later to be energetically decisive. 

Finally, we describe briefly a perturbation correction we have applied in order to 
account for the omission of plane waves above the cut& ELt. The main purpose of 
this is to correct for our inaccurate treatment of the cusp in the wavefunctions at the 
proton. It should be noted that this correction is expected to be rather small because 
of the high primary cut-off we use. In addition, the correction is not expected to 
affect signilicantly the relative energies for hydrogen at different positions, since the 
error is unlikely to depend much on position However, we shall see later that its 
effect on the heat of solution is not completely negligible. 

The correction is applied once only to the sum of single-particle energies, after 
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Figure 2 A test of the pcrturbative " d o n .  "he 
plot S h m  the fully mnwged total energy, Eut, 
for h y m e n  at the tetrahedral site in a system of 
21 aluminium atoms at a sequence of values of the 
secondary cut-off energy E&. White and black 
symbols shw the m u l u  for the primary cut-off 
energy ELt set equal to 8 and 13 Hsrlree respcc- 
lively. 

self-consistency has been achieved, and takes the form of the usual second-order 
perturbation expression. The matrix elements of the potential in this expression are 
those connecting plane waves below the cut-off to those above. The correction 6cqi 
to the eigenvalue of orbital i at sampling wavevector q is given by: 

Here, qqi and cqi are the unperturbed eigenfunction and eigenvalue of orbital i at 
sampling vector q, Ik) is the plane-wave state at wavevector k, and V, is the Kohn- 
Sham potential operator. The sum only goes over plane waves whose wavevector 
G + q is greater than the cut-off wavevector k,, which is related to the primary 
energy cut-off E& by E& = i k z ;  it extends up to a secondary energy cut-off E$. 
The correction to the total energy is then taken to be: 

where wq is the sampling weight at wavevector q and fpi is the occupation number 
of orbital i at this wavevector. 

We have made check to verify that this perturbative correction achieves what is 
requked. A word is needed here about what we demand of the correction. Suppose 
we have made a fully self-consistent calculation using a primary energy cut-off EL,, 
and we have applied the perturbative correction using a secondary cut-off ELt, thus 
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obtaining the estimate Etot for the total energy. If the correction is effective, then 
the estimate EIot should not vary if EL, is varied with EZt held k e d  In fact, it is 
useful to examine E,, as a function of E;", for each given ELut: it is suaighffonvard 
to dculate  the correction for a sequence of values of According to what we 
have said, p l o ~  of E,, against EZt for different values of EL, should coincide. As 
an illustration of this, we show in figure 2 results for the total energy obtained for 
hydrogen at the tetrahedral site in a system of 27 aluminium atoms. The figure shows 
E,, including the perturbative correction as a function of E$ for E&, = 8 and 13 
H a m .  The two curves coincide to within about 2 x Hartree. The figure also 
shows that the correction lowers the energy by some 15 x Hartree, which is 
not negligible when one considers the heat of solution. It is worth noting that the 
perturbative correction used here is similar to the one applied by van de Walle er a1 
(1989) in their recent calculations on hydrogen in silicon. 

3. Results 

3.1. A preliminary test 

In order to provide a check on our methods, we have used them to calculate the 
embedding energy of a hydrogen atom in jellium. This is a rather powerful check, 
because the problem of embedding hydrogen in jellium bears a strong resemblance 
to that of embedding hydrogen in a metal. On the other hand, the embedding energy 
of hydrogen in jellium over a range of densities was well established some years ago 
through much simpler calculations which made use of the spherical symmetry of the 
system (Almbladh el a1 1976, Zaremba et al 1977, N@rskov 1979). The idea is, then, 
that by comparing the results obtained for this system using our present techniques 
with the established results we are subjecting our techniques to a fairly stringent test. 

In making this check, we use exactly the same periodic boundary conditions, Fermi 
surface smoothing and Brillouin-zone sampling as in the calculations on aluminium 
reported below, but of course with the bare Coulomb potential of the proton as 
the only external potential acting on the electrons. The embedding energy is the 
difference of two energies. The Erst is the ground-state energy of the periodically 
repeated system of N + 1 electrons and one proton in volume n; the second is the 
energy of the system AT electrons in the same volume plus the energy of an isolated 
hydrogen atom, the latter being taken to have its exact value of -0.5 Hartree. The 
electron density N/R is given the value appropriate to bulk aluminium, namely 0.0269 
au. 

n o  quantities govern the accuracy of these calculations: the plane-wave cut-off 
energy and the number of sampling points. The dependence of the total energy of 
the embedded hydrogen system on cut-off energy is a h "  identical to that displayed 
in figure 2, though of course with a shift in the energy zero. The results quoted below 
were obtained with a secondiuy cut-off of at least 30 Hartree, which appears to be. 
enough to ensure convergence of the total energy to within 2.5 x 

In order to correct for any incompleteness of Brillouin-zone sampling, we apply 
the 'jellium correction' employed in our previous work on defects in aluminium (De 
Vita and Gillan 1991). The idea is that for calculations of the present kind, the 
sampling error is similar to the error that would be incurred in a calculation on 
pure jellium. We therefore use the given periodic boundary conditions, Fermi surface 
smoothing and number of sampling points to calculate the total energy of jellium 

Hartree. 
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for the number of electrons of interest, and subtract from this the exact value. This 
error is the jellium correction, which is subtracted from the total energy of the system 
under study. 

A De Vua and M J Gihn 

lhbk 1. Embedding energy A E of hydmgen in jellium (energy of embedded hydrogen 
system minut energy of jellium plus isolaIed hydrogen). ?he differenoe behveen the 
uncorrected and corrected A E  is Ihe jellium correction (sec text). ?he reference values 
of A E  are those of a: Almbladh et ol (1976); b: Zaremba et al (1977); c N 0 n k  
(1979). 

16atom 27-atom 

A E (eV) uncorrected 1.36 1.57 
A E  (ev) mrrected 151 150 
A E  (ev) reference 1.30’,b 1 5 l C  

We have performed our test calculations on the hydrogen embedding energy in 
jellium for numbers of electrons componding to 16 and 27 aluminium atoms in the 
appropriate volume. The temperature T controlling the Fermi smoothing was 0.1 
of the Fermi kinetic energy in jellium, and two Monkhorst-Pack sampliig points in 
each irreducible wedge were used. Our results for the hydrogen embedding energy 
in jellium are reported in table 1, both with and without the jellium correction (but 
including in both cases the perturbative correction). The jellium correction applied 
to the perturbatively corrected results gives our best calculated values; these are com- 
pared with the standard literature results, which come from calculations performed in 
spherical symmetry. The close agreement indicates that the heat of solution reported 
later should be subject to a technical error of at worst about 0.2 eV 

The literature values for the embedding energy refer, of course, to the embedding 
energy of hydrogen at infinite dilution. Our conclusion is therefore valid only if 
we can assume that the interaction between periodically repeated hydrogens can be 
neglected. We believe this neglect is justified by the extremely efficient and highly 
localized electronic screening of the proton This is coniirmed by the close agreement 
between the results for different cell sizes. 

3.2 Srabilily of interstitial sites and heal of solution 

There are two possible interstitial sites for hydrogen in aluminium: the octahedral 
site and the tetrahedral site. It is clear from previous work (Manninen and Nieminen 
1979, Kahn el a1 1980, Perrot and Rasolt 1981, Estreicher and Meier 1983, Solt el a1 
1983) that the energy difference between the two sites is rather small. 

We have calculated the ground-state energies for hydrogen at these two sites, 
both with and without lattice relaxation, for systems containing 16 and 27 aluminium 
atoms. It is convenient to present each energy as an embedding energy of the type 
discussed in section 3.1, i.e. as the change of energy on going from perfect bulk 
aluminium plus an isolated hydrogen atom to the system containing the same number 
of aluminium atoms, with the hydrogen at an interstitial site. As before, we apply the 
jellium correction; this does not affect relaxation energies or the relative energies of 
sites, though it does affect the heat of solution. 

The calculated energies are presented in table 2. A number of important points 
are noteworthy. Firstly, the difference between the relaxed energies of the two sites is 
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Tabk 2. Results of calculations on hydmgen at tetrahedral (tet) and octahedral (oct) 
sits for pericdic systems having 16 and 27 aluminium atoms The embedding energy 
A E (energy of hilly relaxed system with hydrogen minus energy of petfeet wtal plus 
isolated bydmgen atom) is given without and with the perturbative m d o n  (see text). 
The energy of solution Ed is obtained by a d d w  10 A E  the experimental discciation 
energy per atom of the Hs molecule (224 ev). Also shown are the relaxation energy 
(mew of unrelaxed minus energy of relaxed systems) and Ihe relaxational displacement 
of nearest-neighbour aluminium atoms. 

16-atom 274tom 

tet oct tet oct 

A E  (ev) no pert. -1.08 -0.96 -1.11 -1.07 
A E  (ev) with pert. -1.29 -1.15 -1.30 -1.24 
Ed  (ev) 0.95 - 0.94 - 
Relax. mergy(eV) 0.36 0.04 032 O M  
Relax. displ. (A) 0.12 0.03 0.12 0.04 

small: 0.14 eV in the 16-atom system, and 0.06 eV in the 27-atom system. Secondly, 
in both systems the relaxed tetrahedral site is more stable. Thirdly, lattice relaxation 
plays an important role in determining the relative stability of the sites. The reason 
for this is that the relaxation energy for the tetrahedral site is over 0.3 ey while 
the octahedral relaxation energy is only a few hundredths of an eV. We comment 
further on these points in section 4, where we also discuss possible reasons for the 
variation of the calculated energies with system size. In order to obtain the heat 
of solution, we have to add the dissociation energy per atom ED of the hydrogen 
molecule to the most negative embedding energy, namely that for the tetrahedral site; 
since we expect our results for the 27-atom cell to be the most accurate, we take this 
embedding energy to be -1.30 e\! We could choose to take the value of ED either 
from calculation or from experiment; we take the experimental value ED = 2.24 eV 
(Beutler 1934). The resulting heat of solution is 0.94 e\; which should be compared 
with the experimental values of 0.83 eV (Ransley and Neufeld 1948) and 0.66 eV 
(von Eichenauer 1968). The significance of this agreement will be discussed later. 

The form of the electronic screening charge surrounding the proton is of con- 
siderable interest. Figure 3(a) shows a contour plot of the valence electron density 
on the (110) plane passing through hydrogen at the tetrahedral site. The extremely 
localized nature of the screening charge, already known from previous calculations 
on hydrogen in jellium, is immediately clear. It is also clear that the presence of the 
screened proton induces only very small changes in the electron distribution around 
neighbouring aluminium atoms. This fact is even clearer if we calculate the screening 
charge distribution itself, by which we mean the difference of charge distribution be- 
tween the system with hydrogen and the perfect aluminium crystal. In order to make 
this difference meaningful, we need to calculate it for the ionically unrelared sys- 
tem, because otherwise the displacements of the aluminium atoms would themselves 
contribute substantially to the charge difference. The screening charge distribution 
calculated in this way for hydrogen at the tetrahedral site in the 27-atom system is 
shown in figure 3(b). This picture shows two remarkable features. Firstly, the distri- 
bution has almost complete spherical symmetry, with hardly any disturbance due to 
the aluminium lattice, except in the region of the nearest neighbours. This provides a 
justification for the common assumption that the charge distribution can be approxi- 
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Plgure 3. (a) Contour plot of lhe elemon density on the (110) plane pasring through 
hydrogen at the tetrahedral site in a system of n aluminium atoms Values marked OD 
conmm indicate the electron number density in unis of 10-a elenrons per Bohr radius 
cubed (in thex unils the average electron density is 2.7). (b) The saeening electron 
density (see text) mnesponding to (ax units of elecimn density as in (a). 

mately represented as a rigid superposition of the proton weening charge in jellium 
and the charge distribution of the host metal (Larsen and N0rSbV 1979, Estreicher 
and Meier 1983). Secondly, one sees clearly the extremely efficient localization of the 
screening charge. We estimate that in the region midway between the periodically 
repeated protons the magnitude of the screening charge density is less than 4 x lod3 
times the bulk density. This very s&~ll value provides further support for the neglect 
of electronic interactions between the protons, which we assume in interpreting our 
results for the energetics. 

3.3. Hydrogen migration energy 

The migration energy for diffusion is the energy barrier that the hydrogen must sur- 
mount as it diffuses between interstitial sites. Since previous work, as well as physical 
intuition, indicates that the lowest barrier is obtained if we move the hydrogen along 
the (111) direction between the tetrahedral and octahedral sites, we have calculated 
the energy proiile along this path. 

In calculating the barrier height, the relaxation of the metal atoms must be in- 
cluded: we require the lowest barrier that would be found if we were to search over 
all paths in configuration space connecting the relaxed tetrahedral and octahedral 
configurations. In order to identify the barrier, we have performed calculations in 
which the system is relaxed to full equilibrium with the proton k e d  at a series of 
positions on the line joining a tetrahedral site to a neighbouring octahedral site, while 
the centroid of the system of host atoms is also held ked.  (Some constraint must be 
imposed on the host system during relaxation, since otherwise it would move bodily 
until the proton arrived back at an interstitial site. The choice of host centroid seems 
to be the most economic and least arbitrary; it is crucial to note that, although this 
choice affects the detailed form of the energy profile, it does not affect the barrier 
height.) 
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Figure S. Prcfile of the mfal energy of the tully 
relaved hydrogen-vacancy system as a function of 
proton position on the stmight line in the (111) 
direaion between the antre of the vacancy (V) 
and a neighbouring tetrahedral site 0. White and 
black circles show respeaively the results obtained 
for the 16-atom and 27-atom wtems. 

The calculated energy profiles for the fuUy relaxed systems of 16 and 27 host 
a t o m  are displayed in figure 4. The energies at the interstitial sites themselves are 
those reported in section 3.2 We mentioned above that the perturbative correction 
has little effect on relative energies within the Same system. Thh is illustrated in the 
figure, which shows the migration profiles obtained without and with the correction. 
The two profiles differ only by an essentially constant energy shift The migration 
energy, which is the energy difference between the barrier top and the most stable 
interstitial site, is 0.20 eV for the 16-atom system and 0.15 eV for the 2740111 system. 
The correct experimental value of the migration energy is unfortunately not clear, as 
we shall discuss later. 

3.4. Binding energv of hydrogen to a vacancy 

When considering the binding of hydrogen to a vacancy, two questions are important. 
Firstly, we need to know the configuration of the hydrogen-vacancy system that gives 
the lowest energy. Secondly, we require the binding energy: the difference. between 
the energy of this configuration and the energy of the same system when the hydrogen 
and the vacancy are well separated. 

In seeking the equilibrium configuration, we have not made a complete search. 
We report here the fully relaxed energies only for configurations in which the proton 
lies on a series of positions on the line in the (111) direction joining the centre of the 
vacancy to a neighbouring tetrahedral site. As in the calculations on the migration 
energy, the total energy is minimised with the centroid of the host system held fixed. 
The calculated energies for the 16- and 27-atom systems are displayed in figure 5. 
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We note that the hydrogen is not stable at the centre of the vacancy; this confirms 
what has already been found in earlier, more approximate calculations (LaBen and 
Nmkov 1979). The most stable configuration we find has the proton displaced by 
only a small amount from the tetrahedral site, the energy being lower than that of 
the vacancy-centre configuration by about 0.7 eV 

The binding energy is obtained as the ditference between two embedding ener- 
gies, the Erst being the energy for embedding the hydrogen in the relaxed vacancy 
system with the hydrogen at the minimum-energy configuration discussed above, and 
the second being the fully relaxed energy for embedding a hydrogen atom at the 
tetrahedral site in the perfect host system. The calculated binding energies for the 
16- and U-site systems are 0.19 and 0.34 eV Our conclusion is thus that hydrogen 
is bound to a vacancy, though we note that the binding energy is considerably lower 
than the values obtained in early calculations (Popovic and Stott 1974, Larsen and 
N~rskov 1979), which were of order 1 eV. The experimental value of the binding 
energy is 0.52 eV (Myers a al 1989). 

A De Via and M J Gillan 

the (110) plane passing lhrough the vacancy centre 
and lhe proton at its most stable position. Values 
ma&ed on mntours indicate lhe electron number - density in wls lo-' electmns per Bohr m&us 
cukd (in these unils the avenge electron densly P 

r& - d is 2.7). 

Figure 6 shows the valence electron density in the (110) plane passing through 
the stable position of the hydrogen and the centre of the vacancy. 

4. Discussion 

We discuss in this section how our calculated results relate to previous theoretical 
work and to experimental measurements. Before doing this, it will be useful to 
comment on the technical aspects of our calculations. 

Apart from the assumptions involved in the localdensity approximation, the main 
sources of inaccuracy in the calculations are the pseudopotential approximation, the 
Fermi-energy smoothing, the plane-wave cut-off, the size of the repeating cell, and 
the Brillouin-zone sampling. The use of non-local pseudopotentials and Fermi-energy 
smoothing in the representation of the metal host in the calculation has recently been 
discussed in a study of the vacancy defect in aluminium (De Vita and Gillan 1991), 
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where LDA-MW results were available for comparison. Given the large cut-off energy 
we have used, and our perturbation correction for plane waves beyond the cutaff, we 
believe that inaccuracies due to the cut-off do not have a significant influence on our 
results. The question of system size is more problematic, since we do see differences 
between the results for our 16-atom and 27-atom calculations which are significant; 
for example, the embedding energies at the octahedral site differ by as much as 0.1 eV, 
which is not fully satisfactory. The possible reasons for such differences are of three 
kinds: firstly, there may be significant elecfronic interaction between the impurities; 
secondly, lattice relaxation may be influenced by system size; thirdly, Brillouin-zone 
sampling errors will be affected by the size of the system. We have shown that 
electronic interaction between the impurities is probably negligible, and we certainly 
do not expect it to affect energy differences. Lattice relaxation effects cannot be 
ruled out, but we note from table 2 that the calculated relaxation energies are very 
little affected by the size of the system. The most likely culprit therefore seems to be 
insufficient fineness of the sampling. We are, of course, already working close to the 
limits of what is currently feasible, but it would clearly be desirable in future work to 
extend these calculations to larger cell sizes with finer sampling. A useful discussion 
of cell size effects in metal-hydrogen calculations has recently been given by Koudou 
et al (1990). 

We now turn to a comparison with earlier theoretical and experimental results. We 
note Erst that our calculated heat of solution of 0.94 eV is in reasonable agreement 
with the experimental values of 0.83 eV (Ransley and Neufeld 1948) and 0.66 eV 
(von Eichenauer 1968). We have shown that our techniques, when applied to the em- 
bedding of hydrogen in jellium, successfully reproduce the known embedding energy. 

We End that the fully relaxed tetrahedral and octahedral interstitial configura- 
tions are very close in energy, the tetrahedral configuration being lower by 0.06 eV 
according to the results for our largest celL This is in general accord with previous 
calculations (Manninen and Nieminen 1979, Kahn et a1 1980, Perrot and Rasolt 1981, 
Estreicher and Meier 1983, Solt ef a1 1983), which all find very similar energies for 
the two configurations. Our most significant result here concerns the important role 
played by lattice relaxation. Our calculated relaxation energy for the tetrahedral site is 
0.32 eV, which is much greater than the value of 0.05 eV for the octahedral site. This 
is not unexpected, since the distance between the proton and its nearest neighbours 
is smaller in the tetrahedral than in the octahedral configuration by a factor m. 
Our conclusion is that lattice relaxation is one of the main physical factors determin- 
ing the relative stability of the sites. The evidence from ion-channelling experiments 
favours the tetrahedral site, though it has been suggested that the octahedral site may 
be occupied under certain conditions (Bugeat and Ligmn 1979, Ligan er a1 1986, 
Myers et ai 1989). It seems clear from both theory and experiment, then, that the 
relative stability of tetrahedral and octahedral sites is a fairly subtle matter, about 
which one cannot yet be completely confident. 

The migration energy we find (0.20 eV and 0.15 eV for the 16- and 274te systems) 
is lower than the value of typically 0.5 eV obtained in same earlier calculations (e.g. 
Kahn et a1 1980). One reason for this is certainly that our calculations are the first 
in which the lattice relaxation accompanying migration is fully included. Again, the 
experimental situation is not very clear. The most reliable measurements appear to 
be those of Papp and Kmcs-Csetenyi (1981) and of Hashimoto and Kino (1983), 
both performed at temperatures above about 600 K, which give values of 0.40 and 
0.61 eV respectively. However, Hashimoto and Kino find that the activation energy 
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decreases strongly when the temperature is reduced to about 300 K Their suggestion 
is that inninsic difhision of hydrogen is observed at low temperatures, but that at high 
temperatures most of the hydrogen is bound U, vacancies. Circumstantial evidence for 
a rather low migration energy of hydrogen in aluminium comes f" a consideration 
of the diffusion coefficient of positive muons. It is well known that muons diffuse 
much more rapidly in aluminium than in copper over a wide range of temperature, to 
the extent that muon spin relaxation is unobsemable in aluminium unless the muons 
are trapped at impurities, though it is easily observable in copper (Seeger 1978, Kehr 
ef a1 1982, H a m a n n  er a1 1988). This suggests that the energy barriers in aluminium 
must be lower than in copper. But the activation energy for hydrogen in copper is 
well established to be 0.40 eV (Katz er a1 1971, Perkins and Begeal 1972). It therefore 
seems to us unlikely that the activation energy in aluminium could be greater than 
this. Our conclusion is that, while our calculated value is somewhat low compared 
with the available data, it is not necessarily in conflict with experiment. 

On the question of the binding of hydrogen to vacancies, we find, in agreement 
with earlier work (Larsen and N0rskov 1979), that the stable size for bound hydrogen 
is strongly displaced from the vacancy centre. As we have stressed, our search 
over hydrogen positions is limited to the line along the (111) direction between the 
Centre of the vacancy and a neighbourhg tetrahedral site. Along this direction, the 
minimum of energy occurs at a point very near the tetrahedral site, but displaced 
slightly towards the vacancy, in qualitative agreement with the results of channeling 
experiments (Myers ef a1 1989). The restriction of our calculations to a particular 
search line was, of course, dictated only by limitations of computer resources, but we 
recognise that a more extended search would be desirable. Our hydrogen-vacancy 
binding energy for the 27-site cell is 0.34 eV This is somewhat smaller than the 
experimental value of 0.52 eV (Myers er a1 1989). We note that early calculations 
gave much larger values in the region of 1 eV (Larsen and N0rskov 1979). 

In conclusion, we believe that the methods used in this work have much to offer 
for the study of hydrogen impurities in metals. We are currently attempting to 
extend the calculations to ueat the energetics of hydrogen in niobium. The use of 
pseudopotential methods for transition metals raises new problems, because of the 
strong d-wave component of the pseudopotential and the strongly localized nature 
of the d-orbitals. However, these are problems that can be overcome, as is clear 
from the recent pseudopotential calculations of Wang el a f  (1989) on hydrogen in 
palladium. 
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